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TECHNICAL NOTE 2Z2

GENERAL CONSIDERATION OF PROBIEMS IN COMPRESSIBLE

FLOW USING THE HODOGRAPH METHOD

By Chieh-Chien Chang

The purpose of the present report is to investigate the hodograph
method as it is applied in general to the problem of compressible flow.
First, the hodograph equations me given in various canonical forms
which are convenient for obtaining solutions in the different flow
regimes.

Since the coefficients of the canonical differential equations are
implicit functions, exact solutions sre difficult to find. Consequently
different approximations are chosen so that some simpler differential
equations capable of solution can be obtained. For most of the cases,
fundamental or singulsr solutions are given or indicated.

The detailed development is concentrated on Chaplygin’s second
equation. The first-order approximation is well-known as the Tricomi
equation. The second- and third-order approximations have a rather new
approach. Both approxhations follow the exact gas law closely in the
neighborhood of the sonic velocity. The solutions are found to be
Whittaker functions and the associated confluent hypergeometrical
functions. Both approximations can be applied to the incompressible
flow so that Chaplygin’s procedure of borrowing the boundary conditions
can be used if necessary. For the third-order approximation, the corre-
sponding hypothetical gas law is derived and is found to differ very
little from the exact gas law. The transformation relation between the
hodograph plane and the physical plane is also given for the various
solutions considered.

To make a comparison of the present approximate solution with the
exact Chaplygin solutions, the flow through an aperture, studied by
Chaplygin and Idghthill, is reexamined. There is some dfiference in
the problem itself, as well as in the method of Chaplygin and Lighthill.
First, the vessel with straight walls inclined at an srbitrsry angle is
considered rather than that with the wall at right angles. Second, no
association of the boundary conditions with those for incompressible
flow is made. The problem is treated directly as a boundary-value
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The result calculated with the Whittaker function checks
that obtained

For the isentropic

by tip~gi?l and ~ghthi~.

1 - INTRODUCTION

steady two-dimensional flow of nonviscous com-
pressible fluids, the pair of clifferential equations in terms of the
stream function $ and the potential @ are nonlinear, and cannot
be solved analytically except for a few special cases. Chaplygin

(reference 1)1 introduced the hodograph method in order to transform
these nonlinear equations to linear ones, so that the available
classical mathematical analysis and the principle of superlxmition can
be applied; While there is a gain in the ltiearity of the equations,
some new difficulties arise in the hodograph method. First of all,
it is difficult, in general, to transfer the physical boundary condi-
tions to the hodograph plane. Second, the flow in the hodograph plane
usually consists of multiple-sheeted Riemann surfaces with a number
of singularities where the analytic continuation of the series solu-
tions becomes very complicated. Third, only one kind of a particular
solution of the stream function - hypergeometrical functions and
trigonometrical functions - has been obtained so far for the equations
in the hodograph plane. By superposition, a series solution is
achieved, but is difficult to apply even if the boundary conditions
are lamwn. Fourth, the transformation between the physical and hodo-
graph planes becomes singular when the Jacobian determinate becomes
zero or infinite. This is likely to happen when the supersonic flow
is imbedded in a subsonic flow region. The existence of the so-caued
Limiting line (reference 7)”causes a breao~ of the entire flow.

In order to obtain some solutions in the case of subsonic flow,
Chaplygin discovered an ingenious method of obtaining usable solutions
for compressible flows by comparison with the corresponding series
solutions of the incompressible-flowpatterns as the limiting case in
the hodograph plane. In the case of no circulation around the closed
body, the derived series solutions involve a free constant to be chosen
at pleasure. But fortunately each solution chosen corresponds to a
reasonable flow pattern in the physical plane. As the free-stresm
Mach number increases, the body shape deviates from the image body in
the incompressible flow. Thus, in general, the body shape cannot be
preassigned and the compressible flow about it determined at a certain
Mach number. This method has been carried further by Tsien and’Kuo
(references 2 and 3), Lighthill (reference 4), and Cherry (reference 5)
on transonic flow up to the occurrence of the limlting line. some of

1
A classified biblio~apm is given at the end of the ‘paper.

.

.—.— - —.———
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their solutions apply to simple closed bodies with circulation. There
are difficulties in the analytic continuation for an arbitrary flow
pattern.

Although C_haplyginand others were pioneers in developing and
adapting the hodograph method to gas dynamics in the early part of this
century, results of the later Russian investigators were not available
in the English language up to 1940. Since the second World Wa.r,the
work of Russians has again assumed prominence in the field, namely,
Frankl (reference 11), Falkovich (reference 34), and Christianovitch
(reference 42). Along the line of formulation by Tricomi, Frankl’s
proof of the existence and the uniqueness of the solution of Chaplyginls
equation in the transonic regime is interesting. Frankl and Falkovich
obtained the solution for the channel flow and showed that the stream
function is triple-valued in the hodograph plane of the axially sym-
metrical plane at sonic velocity. These results confirm what has been
achieved by Lighthill (reference 4). Recently, Tomotika and Tamada
(reference 33) have formulated some approximate nonlinear hodo~aph
equations. A nuniberof interesting particular solutions for the
channel flow have been obtained. Of course, the solutions are not
superimposable. Ehlers (reference 10) and Carrier, along the line of
Cbristianovitch, have obtained the fundamental solutions of the Tricomi
equation and the corresponding channel flow to the second order of
approximateion.

With the notion of the correspondence of the incotiressible flow
to the compressible, Bergman (reference 6) has developed an inte~ation
method for calculating the subsonic flow. For the supersonic case an
extension of the Riemann method is also made by an iteration process
(reference 41). Bers and Gel’hart(reference 55) have similarly developed

a line-integral operator to construct the so-called
E

-monogenic com-

plex function which satisfies the hodograph equations or the general
Cauchy-Riemann equations in equivalence. All are important contribu-
tions to the solution of the dtiferential equation but offer rather
difficult ways to obtain useful solutions for the flow of compressible
fluids.

In the last few years, Guderley (reference 30) and Yoshihara
(reference 36) have given a number of papers ontransonic flows,
particularly with the application of the transonic similarity law which
was developed independentlyby Von K&m&n (reference 29) and Guderley
(reference 30). They have achieved very important approximate results
in transonic flow.

In the subsonic case, if a linear approximation is used to replace
the isentropic pressure-density relation, I&m& (reference 7) and

. . . .——.— -—
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Tsien (reference 14), following another approach of Chaplygti, have
obtained many useful results, particularly the well-known K&m&n-Tsien
formula (reference 7) for pressure corrections. Mn (reference 15) b
discussed the conditions for obtaining closed contours in the physical
plane, i.fcirculation exists. Clauser (reference 24) recently a~lied
this method to find the body shape with preassigned pressure distribu-
tion and this is definitely very use~ in high-subsonic laminar-flow
problems. Garrick and Kaplan (reference 20) have another interesting
approach to pressure-correction formulas using Ringleb’s solution
(reference) of a simple source and vortex.

The present investigation, as the initial step of the research
program of this challenging problem, is mainly interested in the
following three aspects of the problem

(a) Besides Chaplygin’s differential equations (reference 1),
can other useful forms of the differential equations be found system-
atically,.particularly the canonical forms in the different flow regimes?
Of particular interest are the fundamatal or singular solutions which
represent the types of singularities encountered in the hodograph plane.
Is there any method of constructing such solutions as shown by Picard,
Hadamard (reference 52), Hilbert, Riemann, and Tricomi (reference 53)?

(b) If such fundamental solutions are too difficult to construct
or too complicated to apply t? l+e flow problem, what other reasonable
approximations,besides the Karman-Tsien (reference 7) approach, can
be made so that some useful results can be derived in the different
flow regimes?

(c) It is well-lmown that the boundary conditions of the stream
function v (not the potential @) are well-defined in the hodo~aph
for polygonal profiles with or without free streamlines up to transonic
flow. As a reasonable preliminary approach, can the compressible flow
around such a given body be found?

In brief, this paper contains a systematic list of useful forms of
the differential equations. The canonical forms of the exact differential
equations are given for subsonicy supersonic, and transonic regimes.
Unfortunately, one of the coefficients of the equation is an implicit
function of one independent variable. This makes it impossible to con=
struct fundamental solutions which would be of value for practical
application.

Approximations to the implicit function are chosen in such a way
that the solutions can be found from classical mathematical analysis.
In applying the approximations,three objectives are kept In mind:
First, the differential equation must reduce to the Laplace equation
as M+O or M+M. so that Chaplygin’s procedure of utilizing

.
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the incompressible flow can be followed. S;cond, in the transonic
range, the transopic shilarity law of K&man (reference 29) can be
applied and the simplified boundary conditions can be used. Third,
the singular solutions and the fundamental solutions in the subsonic
and transonic regime can be found so that the flow can be determined
directly if the boundary conditions in.the hodograph plane are assigned.
Or, alternately, the Riemaun function in the supersonic regime can be
found, so that an integral solution can be obtained when the initial
value or the Cauchy data aloqg a noncharacteristic line are specified.
Last, the characteristicsmethod can be used.

“h the present paper, a number of approximations for the canonical
forms in the subsonic flow are given. The zero-order approximation is
“actuallythe same as Von K&m&n’s approximation given in reference 7,
equation (63), or reference 13, pages 186 to 188. Both differential
eqmtions of the first-order approximation can be reduced to the
Laplace equation-in polar coordinates. The singular and fundamental
solutions have been given.

The second-order approximations to the differential equations can
be reduced to Stratton’s equation (reference 70) byme~ of the
separation of variables. The particular solutions are indicated.

There are some better approximationswhich should hold for any
subsonic Mach nuniber. They are shown in section 3, ‘Solutions to
Canonical Form of Approximate Differential Equations in Subsonic,
Supersonic, and Transonic Regimes.” Similar approximations are obtained
in the supersonic region. Of course, for each approximation, the
corresponding pressure-density relation must be determined.

U? the general class of singular solutions in the hodograph plane
can be obtained, then it should be possible to solve a large number of
problems by a suitable placement of the singularities in the hodograph
plane to satisfy the desired boundary conditioning mch the same way
that sources, vortices, doublets, and.so forth are used in incompres-
sible flow.

.

Some @eatigations on possible approximations to Chaplygints
second equation are made in section 4, ‘DifferentApproximations to
Chaplygin’s Differential Equation and Their Solutions.” This second
eq~tion is more convenient to use u flow than the ftist equation.
The first-order approximation to this differential equation has been
shown by Frankl (reference 11) to be Tricomi’s equation. Both the
second- and third-order approximations are shown to be associated with
~ttaker’s equation (reference 61). The third approximation is suf-
ficiently good that it should give fairly accurate results in all
transonic-flow problems. The corresponding hypothetical gas law is

——- -— ... --.——. _ ..——— —— — —— —— - - —
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shown in section 55 “HypotheticalGas @w Corresponding to Approximations
of ch.apI.yg4’sSecond E~tion~” and deviates so little from the exact gas
law in transonic range that the exact gas law may justifiably replace .
it. The tramf ormation relation between the physical and hodograph
planes is also shown for the third approximateion.

The polygonal body, either closed or open, is lmown to give simple
boundary conditions in the hodograph for the stream function ~ but
not for the potential @. The particular solutions obtained by the
principle of separation of variables and the scries solutions obtained
by superposition cannot be applied directly without solvhg systems of
an infinite tier of simnil.taneousequationa to determine the infinite
puniberof coefficients h the series. In this class of bodies with
one or nmre convex corners, the solution of the incompressible flow
cannot be used because the velocity at such a corner is infinite
according to the theory of incompressibleflow. Physically, the flow
passing such a body is always tranmnic in character, no matter how
low the free-stream velocity is. As shown by Guderley (reference 31)
and Busemann (reference 3$) some shock always occurs at such corners.
But with the simplified assumption of the transonic similarity law,
the flow about this group of bodies should be obtainable. In
section 3, “Solutions to Canonical Forqw of Approximate Differential
Equations in Subsonic, Ehrpersonic,and Transonic Regimes,” a more gen-
eral simplified eqwtion satisfying the transonic similarity law is
given and the solutions are shown.

For an open body built with straight-line elements but with no
convex corners the problem can be”attacked with the Chaplygin technique
or solved directly as a boundry-value problem In this case, no free
constants can be chosen, and the solution is uniquely determined.

- tO the complicated nature of the asymptotic behavior of the
Whittaker function with a very large parameter, and shultaneously with
a very large value of the independent mriable} the future work will
devote a considerable amount of time to finding the asymptotic solu-
tions correspondingphysically to different flow regties. TMs is an
important step in solving flow problems with the Whittaker function.
The Whittaker function converges very slowly for a large parameter, and
is quite shnilar to the Chaplygin function in this respect.

fi order to demonatrate the method, the flow through an aperture
is reexamined in order to check with the results of Chaplygin and
I&ghthill. It is found that the thir&order approximation agrees very
well with their work. This is given in the last section of the paper.

This investigation, conducted at The Johns Hopkins University, was
sponsored by aud conducted with the financial assistance of the National
Advisory Committee.for Aeronautics.

“

.
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2 - CANONICAL AND

SUI!SONIC,

O’Brien, Mr. B. T. Chu, and Mr. Y. K. Pien.

01’HERFORMS OF

TRANSONIC, AND

2.1 - General Transformation of

DIFFERENTIAL EQUATIONS IN

SUPERSONIC REGIMES

Differential Equations in

Hodograph Plane

The pair of Chaplygin’s ftist-order simultaneous partial cliffer-
ential eqyations for the stream function V and the potential # in
the hodograph plane (equations (11.10) and (Xl.11) in reference 13) is

(lb)

where po/p and 1 - M2 are given functions of the independent

variable q.2

The above system can be transformed to many other forms which are
more adaptable for analysis M a new independent variable Q is
introduced to replace q, thus:

Q= Q(q) (2)./
. .

2A list of symbols is given in appendix A.
...“

4-

.—. —. -——-- .-—..— — ——— —-. --—
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h terms of Q, equation (2) yields

~ PCI dQa$——
ae=7qdqaQ

(3a)

(3b)

Eliminatin’ @ and then ~ from the above, a pair of second-order
psrtial differential equations is obtained as follows:

(4a)

.

Of course, if Q is chosen equal.to q, the following pair of equations
is obtained:

-.. .

a2g+bs~
— “:(!%-%=Oaqz q2 at32

(4d)

which @ave been used by Ringleb (reference 8). Now make some proper
choice of the function Q(q), so that either one or both of the above
equations can be transformed to some simpler form
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2.2 - Chaplygin’s Differential Equations - First Form

In Chaplygin’s differential equations of the first form, he
introduced the algebraic relation between Q and q

q2
Q(d=T=+~

()
ao*

where %* is the stagnation sound velocity. It iS

range of 7 (T has an important physical meaning.
of the kinetic energy of the gas to the total energy

as

(5)

obvious that the

It is the ratio
or enthalpy) is

from O to 1. Figure 1 shows the relation of T, ~ and Mach num-ao*’

ber M. Equation (b) transforms to his wel.1-lmownequation

a[1y+1-MT a3fo
z

(12:T)p aT 2T(1 - T)&l 382

(6a)

1
where ~ = —

7+1
Pl=g and the relations

7-1’
&’(l-T)p ad

1. ~2=1-~lT sre introduced. By means of the principle of the
1 -T

separation of variables, the particular solutions of this equation are
combinations of hypergeometric and trigonometric functions. The dif-
ferential equation in terms of the potential @ transfoms to a much
more complicated form

(6b)

and its solution is difficult to”dbtain directly, but it can be obtained
by integrating the differentials of ~. Actually, there are four sin-
gularities of this equation - three regular ones at T = O,

1 1T=-=- and T = 1 and one tiregulm singularity at T = W.
Iq 2j3+ 1’

Therefore its solution is aot so simple as the other equation.

-— .-. -——-- ..— ———.—. —–.-——-——— — “ .—. —- -—-— ...—— ——. .
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2.3 - Chaplygin’s Differential Equations - Second Form

To eliminate the last term in equation (ka), choose

Q(q) ‘U

where a is defined by (ca is a Comtmt)

Po da
~q~=cc

or

u J’P dq= ——
‘u P. q

Substituting Into equation (k), the last term drops out and

a2v K a24 o
—+——=
au2 CU2 a62

where

‘= (:)2(,-#)_ 1- V,.
(1 - T)vl

(7)

(8)

(9)

(lOa)

(11)

In figure 2, K. is given as a function of T. Of couse, K should
be expressed in terms of a. Unfortunately, it is an implicit func-
tion of u and the differential equation is impossible to solve
exactly. Figure 3 shows the behavior of K as a function of u for
the case CG =-land7= 1.4 where the upper limit of the integra-

tion is q = a*, the sound velocity. It is of interest to observe the
two asymptotes of the K - u curve: (a) K+l as M~O or
U- m and (b) K+ -rn as a 4-0.2513. The function IY can
be integrated as follows:

— ——
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.

.

-0.2513 + tanh-l(l - -r)
[

@-(l-T)@l+l-T 1+(1-T)2=
“3 5

(1.2)

where T.zis given in equation (5) and y = 1.4- is explicitly intro-
duced, h figure k, u is given as a function of ‘T. If equation (9)
is substituted into equation (hb),

3+@.L
au2 a82

which is rather more complicated.

(lOb)

2.4 - Another Form of

To eliminate the last

Chaplygin’s second Differential Equation

term in equation (kb), introduce

Q(q) ‘V

where v is defined by (CV is a constant)

()P q dv— = Cv
Pol- M2 ~

or

Substituting in equation (kb), the last term drops out and

a26+a2ti_ oK—
aV2 a02

(13)

(14)

(15)

(16)

-.._.—. .—— —. -.— — —.
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where K is the same as defined in equation (11) and ~ = -1 is

chosen. Of course K should be expressed in terms of v, if it were
not am @licit function
given in this report.

Similarly it can he

of v. No detailed investigation will be

shown that -

Ka%, a%-,

av2 ae2

It should he noted that equations

(16a)

( 10) or (16) are simpler for only one
of the pair, at the sacrifice of the other.

2.5 - Canonical Forms in Subsonic Flow

It is well-known that the fundamental solution may be found when
the differential equation is reduced to the canonical.form. Therefore,
the canonical form is worth while to obtain. If the velocity is sub-
sonic everywhere in the domain> the canonical forms of the differential
equations can be found in equation (4) in the subsonic or elliptic
range. Take

Q(q) =LD (17)

such that, for M < 1,

or

~_ (H#/2dq-- q (18a)

(Actually &m = *(1 - ~2)@g* =ere the minus sign is chosen so that
q

a* can be imposed as an upper limit.) After integration,

-,
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(18b)

Figure ~ shows m as a function of T, M, and a. In termg of M
or T,

CD= IJl
1/2

()

Mz’ l/2
tam-l k

P1 -
tard{l - M2)1/2-

[11- VIT 1/2
1/2 tin-l

= WI
()

- tanh-’3 ‘/2
I@ - T) 1

(18c)
‘T

Equations (!-a)and (Ub) become

IYV=K ‘~/4+* ~d fj = #$j*

can be written as

which are the
flow and were

&(loge K@)=o (lga)

(19b)

are introduced, the above eq~tions

(19C )

(19d)

Ce”nonicalforms of the differential equations in subsonic
first pointed out by Bergman (reference 6).

—-—----- ———— .—— _ ._ ._. _ -—
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1 K’ d (lo& K1/2)
-—=
2K dm

(20)

d(loge K1/2)
Figure 6 shows as a function of m

du)

Unfortunately the coefficient of the first derivative is an
implicit function of u and also is singular at M = 1. This prevents
the use of Hilbert’s and Hadamard’s approach (reference 52) to formulate
the fundamental solution. Bergman (reference 6), Bers (reference 17),
and Gelbsrt (reference 27) in this country and Eichler (reference 58)
in Germany have given the integral solution of equation (19) but the
process is very complicated. The present paper will give some solu-
tions of the above differential equations (19) under certain
approximations.

2.6 - Canonical Forms in Supersonic Range

If the velocity q in the flow is entirely supersonic, take

Q(q)=$2 (21)

where S2 is defined by

M2 _

()

ldslz— .=
q2 dq

1

or, if the positive sign is chosen,
.W

(22a)

;

.

—.—
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After integration,

$2=

f

(M2 - 1)1/2 ~q

q
(22b)

a*

where Q can be expressed in terms of M or T, each in two ways,

or

fl=p“2c0s-’F+br2-c0s-’

(22C)

Figure 5 also shows ~ as a function of T. ActualJy Q is a &is-

torted velocity magnitude such that Q = *6’ become two families-of
simple straight characteristics inclined at ~45°. (Refer to p. 215 of
reference 13.) Equation (k) becomes

(23a)

(23b)

..._ .— —— — --— .—— — -——-
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In the hodograph plane, the characteristics are the same as those of
the simple wave equation and are invsriant to the behavior of K(Q).

If ~ = (.K)-1/4~* ~d ~= (-K)l/4*@ are introduced, the following
equations are obtained:

d~oge (-K)l/~
(WI - +11T2

a=
( 1)3/2(1 _ T)l/2~lT -

(23c)

(23d)

(24)

d Loge (-K)l/2]
Figure 7 gives as a funccion of 0. The Riemann

m
function (reference 52) always exists uniquely and the solution of both
equations can be constructed theoretically for a region bounded by
characteristics if the Cauchy data are given along a line that is not
a chmacteristic. Owing to the implicit nature of the coefficient

[ 1l/2d loge (-K) .
%

as a function of 0, the Riemann function and the

solution will be too complicated to construct. Besides for the super-
sonic flow the Cauchy data in the transformed hodograph plane are not
completely known in general. Therefore the Riemann function is not
of much use in the hodograph method.

The present paper will also show some solutions to the differential
equations under certain approximations. It should be noted that Cl
and u are related by Q = b if it is desired to extend the defini-
tion of u to the supersonic-side. Such an extension seems very

obscure as yet in its meaning. Fortunately (dQ)2 always occurs in
.

. ..
,, ..-,- .

-.
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differentiation, and the derivative of the logarithmic term does not
depend on such an extension. Therefore equations (23a) and (23b) are
single-valued.

There is another interesting feature of the canontcal form. In
the hyperbolic region, the characteristics are the same as those of the
simple wave equation while in the elliptic region the imaginary char-
acteristics are the same as those of the Laplace equation. They are
invariant to physical conditions. The physical law influences only
the first-derivativeterm.

2.7 - Canonical Forms in Transonic Domain

Now choose Q(q) = e where e is definedby

.

.

(25)

and lrher~ f(~) is an arbitrary function. (The upper sign is to be
used for subsonic flow and the lower sign for supersonic flow.) Then,

For M< 1 choose

()de’ 2 1- $ ‘
f(e’)—”=

dq q2 .

(26)

(25a)

Equations (ka) and (kb) can be written as

— . . . . .———.—— ——. _——— .——.
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where E‘ is used for ,e .in the subsonic region. For M >1 choose

d&2=$-1

()
f(e“) —

dq ~2

g e“ )]

a%—- f(e”) ~
(aEq2

‘#iifi[Oge li-K)f(e11il”2}‘0

.

1/2

}

= o

where e” is used for ~

It is interesting to
be combined into a single

(2m)

(28a)

(28b)

in the supersonic region.

note that the above two sets of equations can
set if f(e) is an odd function, that is~

()
d~z Mz-1

f(e)= =—
q2

(at)

(29a)

3,2- ae ~{”geE-K)f(eill’2}‘03- f(.)fi l!!d 1 (29b)

a62

which are valid for both M <1 and M > 1. It should be noted that
e>. for M>l and e<. for M<l.

The canonical form of the mixed differential equation is explained
as follows. If, fo~owing Tricomi (reference 52) f(6) is set equal

to e and -K= ($)2( )# -1 is introduced, equation (29) reduces to

.

.

—— -.
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.

which are valid for

(by setting e3 = ~

(3a)

(30b)

the mixed region. They can be obtained directly

)2n
()

in.equation (23) if M > 1 and -63 = ~ a
2

M<l. These may be called the canonical forms
equations in the transonic re~ion. The solution of

in equation (19) if
of the differential
the exact clifferential equation is obviously cliff~cult. Some singulax .
solutions of the above equation under approximations can be obtained
as will be shown later.

It is well-known that the characteristics are fixed for all linear
hyperbolic clifferential equations. But there is an titeresting feature
in the canonical form such as equations (30a) and (30b), because the
characteristics are fixed and invariant to the function K(6) or to
the physical problem from which the differential equation is derived.
The characteristic equations are

which represent two families of characteristics of cubic parabolas with
cusps at their points of intersection

3 - SOLUTIONS TO CANONICAL FOFWS

with the ~ = O axis.

of u and $2. Figure 9 shows

c.

OF APPROXIMATE DIFFERENTIAL

EQIWTIONS IN SUBSONIC, SUR3RSONIC, AND ‘IRANSONICREGIMES

In the last section, the general derivatives were shown of the
canonical forms of the differential equations in the different regimes.
At the same time, it is found that the coefficient of the first-
derivative term h any one of the canonical formsis always an implicit

-—. . .. — _ .______ —... ___ ._ .— . ———.
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function of one independent variable. The exact solutions are very
difficult to obtain. It seems justifiable to seek some differential
equations with an approximate coefficient for the first-derivative
term so that solutiom axe relatively easy to formulate. Of course,
the validity of the solutions thus obtained must be examined and the
limits of the range of application must be defined. In this section,
the solutions of the approximate differential equations will be given
and their applications will be discussed.

3.1 - Subsonic Canonical Forma - Equations (19a)

and (19b)

In the subsonic case three approximationsto the canonical form of
the differential equation will be given. FiWe 10 shows the exact

Zero-order approximation ofVon K&m&.- In reference 7, Von I&n&n

suggests taking

(31)

where pm and Mm are the density and Mach number at the free stream.
fi figure 10, the horizontal dotted line shows the approximation
~/2

It is apparent that the approximation becomes better as
-“ —

u40 or M-O. With this approximation,the coefficient of the
first derivative becomes zero in equation (19) and so

a2@+ a2$- (-j

&# W2

which are hplace equations. These equations
translation and rotation. Therefore, u can
sonic velocity a* and so defined as

(3~)

are invariant under
be set equal to O at

(32a)

—
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.

(33)

Of course, Chaplygin’s procedure of utilizing the incompressible-flow
pattern to find the corresponding compressible flow can be followed.
There is another possible approach. E the types of singularities and
their locations in the flow of the hodograph plane are kno~m and if,
in additiony the boundary conditions of the stream function are known
under reasonable asswnption or under assignment, the solution of the
flow should be obtained uniquely by superposition of the fundamental
solutions corresponding to the types and location of the stigularities.
After the solution in the hodograph plane is obtained, the corresponding
flow in the physical plane should be checked to determine if it is pos-
sible or not. To serve such a purpose, the fundamental solutions of v
and @ due to a source at O. and e. are given as an example.

d(%%%),60)=-Q3e ~“-%)2+(e - eo)~’/2

‘+’(uye;~,eo). -tm-l 0- ~.e-e.

(34a)

(34b)

Of course, with the simple source, there can be built up the potential
and the stream function of higher-order singularities such as doublets
and quadruples. Actually, it is more convenient to treat the problems
with functions of complex variables, because $ and @ are harmonic
functions.

First-order approximation of the canonical form.- It has been lmown

for some time that the above approximation is not very good at high-
subsonic velocity. A higher order of approximation can be made as
follows. Instead of taking the approximation as given in equation (31),

the approximation can be made accurate to the slope of the curve ~1/2

against m at the free-stream condition, that

@2 ~ a+ti

is,

(3%)

.

---- ——- .—. —-. _ ——. —.—



22

where

NACATN 2582

if ul=um is chosen as the

is shown in figure 10. Then

8% +

#

3 +
b2

Introducing G = m + ~ into

a%

(35’0)

(35C)
[ IiiLD]-m

free-stream condition. This approximation

equation (19) yields:

the above equations,

&& ae’

9+22!+
S ae2

These are identical to the equations

(36)

(36b)

(37a)

Q!=o (3P)
z%

of Stokes and Beltrami for axially
symmetrical flow. The particular solutions of interest are the well-
known Bessel and trigonometric functions, and are not given here.

These differential equations are invariant under translation in e.
From Lamb’s “Hydro@amics,” the singular solution corresponding to a

source at~=-~or fio=Oy Oois

I

————
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@~+ ;)% -+)%) =

u

Recently ~~ei~te~ (reference 56)
syamwbrical potential, the fundamental

( )
00 + ~,eo is

b

23

has shown that, for the axially ‘“
solution for a source at

?(u)+=e”u)o+se ) -&’ -‘0)2+(e- ‘.f.11’2,++g‘)
b? 9 b~O=

++ w’2k+31’2
b’

‘here‘he ‘iC’ion J++iv)
(39)

( )
is regular at the point m. + ~,’. . .

t

The corresponding singular

*(CD+ ~,e; )-+eo .

The fundamental solution of the

solution to the stream function is

stream function is not given here,
because it is long tid involved. The singular solution for more com-
plicated sources can be built up easily. Therefore, if the boundary
conditions and the locations and types of sources are given in the
hodograph plane, the flow in the hodograph plane can be found with the
classical technique of boundary-value problems. If the boundary con-
ditions,sre not known, the series solution of the incompressible flow
may be considered and Chaplygin’s procedure followed.

Second-order approximations.- Choose the following approximation:

where

(41a)

( klb)

w=f.D-m

———— ——. ———. —— —-- ——-—— --— -— ———. - —
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!rhiS

c.

approximation is also shown

( 41C)

( kid)

in figure 10. Then equation (19) yields. .

a2$- a2* b+2a av_o-+- -
b2 ae2 a+tm+ c&~

ZZ+ZL+ ‘+2’” Z!=O
W aep a+hm+db

These equations can,be

u.)’= 2C

(
‘2 - (~c)l/2 0-

written in another form by introducing
b
z )( )if b2> kc.

a2$ .
&y 2

( 42a)

(42’)

(43a)

( 43b)

The particular solution can he obtained by the principle of separation
of variables, if it is assumed that

.— .
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where ~1 and @l satisfy the ordinary equations

(44a)

(4m)

which are special cases of Stratton’s equation as shown in reference 70.
The particular series solution can be obtained but it is too long to
give here.

Comments on above three approximations.- If the above three approxi-

mations are plotted in comparison with &(,oge ~/2) ~ga~t ~ ,n

figure 6, they are not satisfactory. The zero-order approximation

maintains a zero value, although the true value of
( )

1/2 at~ loge K
dm

am may not be zero. The first-order approximation becomes roughly the

zero-order approximation to
(

l/2~ loge K
da) )

at mm, while the second-

order approximation becomes roughly the first-order one. It is a~arent
that the above procedure can be repeated to find all the approximations
to the curve in figure 11, but this kind of approximation is not shown
here. Some other approximations are given to take care of the asymptotic

.—.. —.— .—-—— —- —— .— .—
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Approximations to singular behavior of &(loge @/2)o. ,,we ,,

shows the curve of ~(lo~e ~/2) against 0. Some simple calcu-

lations will show that
( )

-~and

-$-~o~ ~(1 - M2)’/~f17a~!~~’;lefo~e, a simple, but

good, approximation is to assume

&(,oge #) . c - E
2K” U3

(46a)

The constant a can be chosen in two ways:

1 if the exact behavior at sonic velocity is(1) Choose a = - ~

desired. This is shown h figure 11.

()(2) Choose a such that ~ = ~ , if the flow velocity in
mm mm

the neighborhood of free-stream velocity is desired. If u= is

infinitely lsrge, it automatically reduces to K&mz&’s approximation.
This case is also shown in figure 11.

This approximation is important because the fundamental m sti-
gular solutions can be obtained similarly to equations (38) and (39)

except the one-half power is replaced by the ~ power.

The next approxhation along this

(
~ loge K )

1/2 ~
dull

line is to assume

CD(l : hm)
(Mb)

where a and b are two free constants to be Chosen.

——
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A few choices can be made:

27

(l) Take a= --$ and b to be such that ~=~ if
= (l)m(l+ bum)

the interest is in the sonic and free-stream velocities.

()Ki are satisfied, for example.
= um.mm

This case, shown in the

graph (fig. 11) checks well with the exact curve. The differeritial
equations are

similarly, it

where a, b,

simplified to

#v+a% a aw ~—- —.

&D2 a02 U)(1+IxD)au
( 47a)

(47b)

can further be assumed that

K’—- a(l + W)
(MC)

2K- @(l + ccc))

and c are free constants. One case is shown in the

graph (fig. 11) with a, b, and c determined from the values of ~
2K

at 0.5u@ u~ and am. It’checks very well with the exact curve.

3.2 - Supersonic Canonical Forms - Equations (23a) and (23b)

Zero-order approximation.-Following the approach of Von K&& in

the subsonic case, there can be chosen in the supersonic case the
approximation

.

(-K)l/2 = %(M2 - 1)1/2 ~ ‘o
&=’2 - ‘)1/2

(48a)

— . —.—... ..——-.——.—- --- -——.— ——— —-- ——
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[

q

f-l= (~2 - J@
dq’

q’a*
(48b)

where q is always supersonic in the domain of the flow pattern. Then,
the coefficient of the first derivative in equation (23) is zero, and

B_ El!!=o
&2 ae2

(49b)

which has the solutions

$-(sl,e) =F@ + e) + G@ - 19)

W_@ = F+s2 + e) + G+Q- e)

which are well-known classical wave functions. The approximation is a
straight line parallel to the Q-axis as shown in figure 12 with O = O@.

First-order approximation.-Along the same approach as the subsonic
case, it is easy to show

&; a2fl + b’ ??!=O-—
aQ2 ae2

a’ + b’~ an

(5@)

(50~) .

-—
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where

a’ =
[ I(-K)l/2_~d(-K)l/2

W Q=slm

[1~, = d(-K)l/2

m Sl=slm

Introducing ~= 0 +-~ into the above equations,

~=az~ law ~—-- —=
aii2 ae2 iiaii

If the following characteristic coordinates are introduced,

and then,

(51a)

(52a)

(52b)

—. ——._ .——.—— ———-— .——.. ———..
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which are Euler-Poisson’s equations with p = p‘ = - ~ in $ and ~

~ $= The Riemann function corresponding to ~ can be shown to be

(Po - qlla(p - ?#2 - +
I(M &, PO)= 2%( )+;1; a (54)

(J-l- A) 2

where ~ (or fio+ eo) and W. correspond to C!.+ ~ and

point of interest, ~1 iS the hypergeometrical function, and

eo, the

“ b)

It becomes too cumbersome to write
of the original coordinates fl and e.
0 = ~ in five 12. Since the Cauchy

the potential the corresponding Riemann

the Riemann function in terms
This approximation is shown at
data are difficult to assign to

function becomes useless. There-
fore, with the above Ria@nn function ~ the stream function v at a

Pofit (~o,e) can be found by the Riemann method, if the Cauchy data

are suXYiciently given. In general, even if the Cauchy data are suf-
ficiently known-~ the hodo~ph,
to apply.

Second-order approximation.-
it is not difficult to show that

the Riemann method is rather difficult

Following the same procedure as before,

( 1)#ga~+ 1 . 1 agf. o—.
aii2 a02 ii+l II- an-

(5m)

I

—. -.
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where .

31

2“ (Q-%) (@’)2>~tJ (~6) -
@lq’ - 4ql/2

l-l (57)

4 is under investigation, and is not soThe Riemann function of
easy to obtain unless a long series solution is adopted: However, the
particular solutions are of Stratton’s type, but are not given here.

Some better approximation’of the coefficient
[

$loge (-K)
3

1/2
can

be made, but the solution to the resulting equation will be more diffi-
cult to obtain.

Comments on above approx-tions.- The above’approximations become

worse as %-O or M-l. Even at very large Mach numbers, they

are not very optimistic approximations.

3.3 - Approximations to Transonic Canonical Forms “-

Equations (30a) and (30b)

Take the transonic canonical forms of equations (30a) and (30b)

(3oa)

(30b)

—. ___ .———. . .
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Following Guderley (reference 30) introduce the variable

(supersonic)

3%.6*
{ ()=

F G3 z (subsonic)

(58a)

(58b)

It is interesting to note that K >0 in the supersonic side and L <0
in the subsonic side of the hodograph plane. The equation { = 1 corre-
sponds to the pair of characteristics starting at e = O on the sonic
line. The independent variable 13 canbe eliminated in equation (30a)
and equation (30b). Since the two equations are equivalent in behavior,
only equation (30a) is treated here. Thus there is obtained

Now examine

(1]-K .0—
G

J’i (~jjwhat conditions must be imposed on G ~

(59)

so that the variables ~ and 6 are separable
First, assume

‘!(C,C) =v@$*(!)

in the above equation.

(60)

Equation (59) yields

(61)
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where K = (+)2(1 - @) is a known function of E. In general, the

33

above equation cannot be solved unless
imposed:

the following conditions are

and

where us and 13s are individual constants to be chosen

tion (61) can then be written as

(62a) -

(62b)

later. Equa-

which is a hypergeometric equation. Its singularities are ~= O, 1,
and m. The general solution about ( = O is ‘

(64a)

The solution about ~ = 1 is

—.——.. —— ..— —. ——-— .——. .
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Following Kummer (reference 61), all the 24 solutions about the
.

3 Singular points ~ =0, 1, and ~ can be obtained. The triple-
valued behavior of w2(~) for { = O canbe shuwn easily. This

agrees with the results of I@hthill, Guderley, and Carrier. Under
the imposed condition, it is not difficult to show that

(65)

where %+% and-es is a free constant to be chosen later. Also,

~ ~G~~e ($],if by definition ZS = –— its approximate value 5S can

be calcu.latedfrom equations (62a) and (62b):

1+- CSA-=).
2s =1- 3 (Ps - U8)

3(B8-4
1- CS6

(66)

The exact value of 2s can be determined from equation (25a) with

f(e) =~’and K= (*)2(. - %).

It is necesssry now to choose the approximate variable Es so as

to have the same ordinate and slope as ZS at e = O (or M = 1) if

the flow at sonic speed is of particular interest. It can be shown
that, at 6 = O,

‘s = o (67a)

(&II)
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These conditions determine

where c~ z -0.525. With the approximation to equation (30a), the

approximate differential equation becomes

The singular solutions of this equation are

.

(6$9)

(70)

where as should be chosen to avoid the limiting line in the physical

flow pattern. It should be noted that equation (69) and its equivalent
equation-of @ (not shown here) are one order higher in approxhtion
than the Tricomi equation. ~ other words, the Tricomi equation is
equivalent to taking z~ = O for all values of 6. For negative

values of as, the singularity of w is at ~=~. If as is posi-
‘%

tive, there are two singularities of v, one at c = O and other at

1~.—,
Cs

..

.— .—-. .——.- —-—— —.— ._—.—. — .:-.—— - - —-—



36

4-

NACA TN 2582

D~ &H?ROXIMATIONS TO CHAJ?LYGIN’SSECOND

DIFFERENTIAL EQUATION AND THEIR SOLUTIONS

From equations (10a) and (10b),

a2t+Ka2v_o

aa2 ae2

$+ K ~ - &(’og,,K)# = 0

.

(71a)

(71b)

where K = (!$(, - M2) is an implicit function of a. The exact

solutions tie difficult to obtain. Chaplygin (reference 1) in his
researches on subsonic gas jets chose K = 1 so that his equations
become Laplace equations. As sho~,min figure 3 this is a reasonable
approximation if the maximum Mach number in the jet is much less than
unity, because K =,1 is actually the asymptote for the true K - u
curve at M = O. Karm& (reference 7) and Tsien (reference 52) extend
the idea to the linear approximation of the pressure-volume relation
corresponding to the free-stream condition, also obtaining a Laplace
equation and achieving many fruitful results of technical importance.
In the transonic flow, of course, such approximations cannot be applied.
Von K&m& (reference 29) in 1947 gave the approximate differential equa-
tions which are valid when the flow velocity is in the neighborhood of
sonic velocity and when the body in the flow is thin. He also found the
transonic similarity law which gives a satisfactory prediction of the
wave drag for thin bodies. In the hodograph plane, the approximate
differential equations are of the Tricomi type. The concept of the
similarity law has been further discussed by Kaplan (reference 39) and
Guderley (reference 31) and extended by Tsien to hypersonic flow. The
main contribution of the transonic similarity law to the hodograph
method is: Instead of investigatingthe flow about a given thin body,
the flow of a %ody with the same thickness distribution as the given
one but of vanishing thickness ratio can be investigated. Because of
the vanishing thickness ratio, the boundary conditions can be simplified
in the hodograph plane and are shown to be consistent with the approxi-
mation applied to the differential equations. Under these conditions,
the problem becomes a boundary-value problem of the type studied by

.——.— —
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Tricomi. It is unnecessary to use associated boundary conditions from
the incompressibleflow as done by Chaplygin. After the transonic flow
of the body with vanishing thickness ratio is obtained the transonic
similarity law may be applied to find the aerodynamic behavior of the
given thin body.

The success of the above approximation encourages the author to
seek some higher-order approximations. First take a look at the
K - u curve shown in figure 3. It has two asymptotes: Oneis K=l
and the other is u = -o.2513. It is a monotonic increasing function
of a within the range -0.2513 <cr<m; at u=O, K=O. It iS
understood that u > 0 corresponds to M< 1 and U< O to M > 1. -
The main interest of the investigation lies in transonic flow. There-
fore, if possible, the approximation should be so chosen as to maintain
the behavior of the exact K - u cyrve at and near the sonic velocity
(cr= O) and at the same time preserve the asymptotic behavior of the
exact curve as M-O (a-@)and M~CO (ue-O.2513).

Just as important, the approximation equation should possess solu-
tions within the reach of classical mathematical anal~is. With these
few criterions in mind, it can be seen tQat the Taylor series expansion
of K about u = O is not a favorable choice, although the first
approximation to be shown below is of this nature.

4.1 - First-Order Approximation in Neighborhood of Sonic Speed

.

Frankl (reference 11) in 1945

equations (71) by letting K z El

obtained the Tricomi equation from

= acr and consequently

a%-+a~=.o
a$ a02

—+..3azgf

au2 a02

()dKwhere a = — %9.42 and IJ=
da ~~

u

* -,.-

r*P1—– dq as &Lven in the
q

Po q

(72a)

(72b)

earlier definition. The comparison of the approximation xl with the

exact value of K is shown in figure 3. From the figure the range of

— —— ——
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validity of this approximation is very narrow, only in the immediate
neighborhood of the sonic velocity a*. The solutions of these equa-
tions have been fully investigatedby Tricomi in his famous thesis
(reference 53). Carrier and Ehlers (reference 57) and also Weinstein
(reference @) have further investigatedthe singular solutions of
these equations; Tomotika and Tamada (reference 33) also made interesting
contributions to the singular and fundamental solutions. Recently
Guderley (reference 31) made an extensive study of the singular solutions
and showed a very important singular solution corresponding to a family
of airfoils at sonic speed. Guderley and Yoshihara (reference 36) gave
the flow over a wedge airfoil at Mach number 1. They.employ an elegant
method of attack in solving the problem.

In the early days, Euler and Darboux obtained the fundamental solu-
tions of the same equation in the pure elliptic and in the pure hyper-
bolic domains as pointed out by Tricomi (reference 53). The importance
of Tricomi’s work is the recognition of the differential eqpation in the
mixed domain, that is, partly elliptic and partly hyperbolic, and the
proof of the existence and uniqueness of the solutions in such a mixed
domain. Following the footsteps of Tricomi, Frankl (reference 11) has
shown the existence and uniqueness of the solution of Chaplygin’s second
differential equation in the mixed domain, particularly on two problems,
one being the detached shock wave of a wedge and the other being the
supersonic jet from an inclined-walledvessel.

4.2 - Second-Order Approximation

From the comparison of the first-order approximation and the exact
curve in figure 3 it is immediately apparent that some improved approxi-
mation should have a wider range of validity than that given by the
linesr approximation. The usual technique of taking higher-order terms
in the Taylor series would not be particularly helpful because they
would not improve the asymptotic behavior for large negative values
of K and for large values of cf. Therefore, choose

K(a) =“%(U) =% (73)

where a= (~)= (&). ~.1+2 at .=0 and c cs.nbe chosen in .

.
any one of three ways:

\
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“) (%)‘(5)a’ -u = 0, favorable for transonic range

(2) c=a so that *&=K+l exactly as u + co,favorable

for transonic and subsonic range

(3) c = -1/o.2513 so that ~ =K ~-w exactly as CJ+-O.2513,

favorable for transonic and supersonic range

It is interesting to note that, in equation (73), ‘~ -+~, a

.
finite value, as u+w, and ~+rn as cr+-,~. Thus, for any

one of the three choices, ‘~ .always has two desirable asymptotes.

Therefore, the approximation should be fairly good in the subsonic range
and supersonic range. Of course, if Chaplygin’s procedure of using
boundary conditions similar to those for an incompressible flow is
followed, the second choice is a favorable one. Cases (1) and (2) are
shown in the figure. Both seem good in the tranaonic range. Case (3)
is not shown. The only known second-order approximation is given by
Laewner (reference 73). It is also shown in figure 3 for comparison.

With the above approximation equations

~%+ aa ~,=

au2 1+ cua.92

(?’1’)and (71b) become

o (74’)

1
—-L —+

Equation (74a) can be solved as follows:

Assume the variables in ~(u,e) separable and iet

.

(74b)

—. .. . ..———-.-. .— ....—-— ._ -.— — .—— — — ————.-.
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where the positive integer n is introduced to characterize the nature
of the solution

[

c3e + C4 (n = o)

$2 (n)(e) =

~~ (nW) (n + O)

where the positive constant X is so chosen that ~~ (nXB) is

$I(n)(a) satisfiesperiodic for any fixed interval of e. For n# O,

the equation

(75)

~troduce a new independent variable z = Obviously,2d(:)1’2 (. + :).

1 < u~m, the corresponding range for Z iS O ~ Z ~rn.in the range -= . -

Equation

which iS

a reason

(75) @=l~

a particular case of

to be shown later).

Before the choice of the

(76)

the Whittaker equation with m2 = ~ (for
4

Here k=~~l’2>0.
()2C c

solution is made from the known results
of classical mathematics, a clear understanding of the nature of the
desired solution when a + W or when the flow becomes incompressible

(n)(z) must behaveis necessary. As u am, z ~rn and *1

.

— .—- —. — . ..—
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like et: from the l~ting case of eqyation (76). Furthermore

(n)(z)

i

sin nAB

*1 will be just a single term of the convergent infinite
cos n~

series which represents ~(u,e), to be shown later. The term *1(n)~z~

should remain finite when u +rn. Therefore, ~l(n)(z) ~ e-~ as

u+~ is necessary.

(n)(z) at largeWith the desirable asymptotic behavior of $1

values of a in mind, the only choice is

.-L-. “%’ ‘ “

whose integral representation (see reference 61) iS

z

1
(o+)

W(d (z) = I’(k+ l)e-zzk

k,-~ ()
(-t)-k-l ~ + : ‘-le-t dt (77)

21’ti

where the path of integration is a contour in the complex t-plane
starting from m just above the real axis, encircling the origin in
the positive direction (counterclockwise),and returning to the starting
point just below the real axis. In general, for k >0 there are two
branch points, one at t = O and the other at t = -z, a point on the
negative real axis (since z >0). Thus the path of inte~ation must
be chosen so that it will not

The asymptotic expansion
of large values of n) is

encircle the branch point t

for large values of u (not

= -z.

simultaneously

-- -—.——.-——...——. .———— ——— . .
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For the case of large values of n, the asymptotic expansion of

W(n)l (z) is much more complicated owing to the fact that both k

“-z
and z, being proportional to a, become large simultaneously. Very
little information on such expansions is available.

.
For numerical calculation, the corresponding series solution is

desirable. Jeffreys (reference 71) condenses early developments of
Whittaker, Goldsteim, and Stoneley and puts into compact form the
relation between the Whittaker function and the confluent hypergeometric
function. The following discussion closely parallels his work except
for some changes in notation. For 2m = *K (p is a positive integer),
the Whittsker function can be represented by a combination of Kummerts
series when the limiting value is taken. Thus,

~’~k,m
(z). Mm

[ (

r(-a) ~,m (.) + :(~)

)

%,-m ‘z)
ti+tp r ~“- m- k

(‘Z+m-k )

where

( )~,+m(z)=:;zh+*‘(*~+1) “ ‘~-k+~+s ~

( )Zrti-k+$s. r(t2m+ 1+ s) S!

~F1(a,y; Z) being the confluent hypergeometric function.

(
u.m- ~+~, ~ = -2m + 1 according to Jeffreys’ notation.)

.

———
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where

.

( )bln+l;z =
r(-h)

u ‘m --k + 2’ (
~F1 m-k+

)
;,2M+1;Z +

I’(-m-k+~)

r(a)z~
~ #l(-m -k+ ~,-2m+ l.;z)

He gives the solution of the limiting

case if m is chosen equal to -+ (7

be written

case 2matI-L. For the present

= 2 in his notation), there can

where

U2(Z) =>
r(-k)

The function

w -:z~l(z) + U2(Z)J “~l(z)=e

‘-2

Ul(z) = 1 z-l

r(l - k)

(79a)

(79~)

~F1(1 - k,2,;
EZ) oge z - F(l),- F(0) +F(-k~ +U3 (79c)

F(c) is called the digamma function and is generally
represented by $(C + 1) (reference 74).

F’(!) = $$% r(~

(F(0) = E~er constant

1+1)

‘-*-*-*-”” ).* (80)

(-7)= -0.57722. )

— ——— -——— _... .—. .—. —— —— —.- ——-—— ..—
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For the present case,

m

I (~s (1-k) (2-k) . ..(k)k) s 1
U3(Z) = —

E
—-

s=~ r(-k) S!(s+ l): r- k
r=l

2
E
‘&+l 1

)

-—
r 8+1

r=l

m

x (~+s-z~i+%+)r(l+s-k)zs s=

s=lr(-k)r(l - k)

(k# integer) (81)

‘Then,the series solution of equation (76) is

m

W(u,e) = ( z (n)
cl~ + c2)(c3e + c4) + AnWk ~ (z) sin (nM3+ ~) (82)

n=l ‘-T

where c , c , c , c , A
1 2 3 4 n’md an

are constants to be determined

from the given boundary conditions or from the boundary conditions
associated with an incompressibleflow as in Chaplygin’s method, if
necessaxy. Of course, the convergence of the series must be established
for the particular problem in order to be sure the above repre~entation
is correct.

4.3 - Third-Order Approximation

The K- IJ relation can be approximated more closely by assuming
_~<a<co oftheforman analytic function of a in the range c

K.~3. aa(l + bu)

(1+ CU)2

(83)
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(2) ~=$=a at u.O

(3) ~.sl% at a=O
d&

(4) ti3(u) also possesses two asymptotes, one of which can be
made to coincide with an exact asymptote of K(C).

The conditions (3) and (4) determine the constants b and c. The

above approximation with K3 ~ ~ =
.

C2

ure 13. It checks very well with the
from subsonic through tranaonic up to
asymptote, a = .o.2583 as ti3= -cu,

1 as a -co is shown in fig-

exact value of K for the range
supersonic regimes. The other
does not differ greatly from

a = -0.2~13 for the exact val~e of K. There is another @ortant
advantage of this choice, because the boundary conditions of incompres-
sible flows can he borrowed as in the Chaplygin procedure.

~troducing equation (83) into equations (71a) and (71b),

and

i32if+ aa(l + ba) & .0

a# (I + ca)2 ae2

fi+ 41 + ha) ~ (2b - c)a + 1 9=0

bc? {1+ ca)2 b62 - a(l+ ba)(l+ ca) ba

(84a)

(84b)

To solve equation (84a), assume that the variables are separable and

(n)
w (U,e) = VI‘n)(a)$2‘n)(e)

.—..— . ... . . .. —-—. z —.. — ———— —.— —.—
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where the superscript (n) is used to show each solution is related
to n, a positive integer, .

1Ce+c34

‘n)(a) satisfiesand ~1

With the

equation

where

I&@
d# -

introduction of a new independent

(n # O)

(n = O)
(85)

(86)

(86) can be transformed to the well-known Whittaker ~’~tion

rk=-nc-~~<O (c > m)

2C2

(87)

(88a)

‘=- T-;2::-b;’i)‘88b)
real if

~k ‘i

——— .- .
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The fundamental system of solutions of equation (86) is

47

[

(n). ‘n) (-z)CnWk,m (z) + ‘nw-k,m (n # O)

~1(n)(z) = (89)

LCla + C2, (n = O)

where Cn and Dn are constants to be determined.
:

The Whittaker functions

hypergeometric functions and

.-

can be expressed in terms of the confluent

Kummer’s functions if m # t+ as follows:
c

w(n)
~,m (z) = r(-:: ~ $1 (z) + r(~) (n)

(
r-m-

)
>

( )

~,-m (z) (90a)

5
rm+k+~

and

.

(I=g(-d+) (90b)

where the Kummer’s series are

z ~+~ r(t~ + 1)
~~ (Z) . e-= z =5*

--
Fs=’Q- .

(~F1ti+k+@n+l;_z
)

—.

——-—-.—- ...—. —.. . . . ..— ._ ..__ _____ ----



Besides,

uniquely

the integral solutions are much more general, and the WMttaker fuuctione can be defined 6

whether or not m = ~.

o+) 1

Wf’; (z) ( )r‘;zk
=--& I’-m+k+Le (-t)

()

~ m+k-$ -t dtm-k-z ~+_
e

) 2 z

m

(91a)

( J
(o+) 1

t,m-k-i e-t dt (9m)k+;$ (-z)-k
m+k-~ ~__

‘~j~m(-’) =-*r-m- )
(-t)

() z

m

In the present case z IS real and positive and the contours are 60 chosen that the second

branch point t = -z IS excluded. For more details comult reference 61.

Now the question arises whether both or only one of the two Whittaker functions exists in

the rmesent solution, This can be detemi.ned from comidering the Incoqressible flow as the

limiting case as U+M (M+ O). Furthermore, ~~
(n)(z) PC: ng is just the nth term of

the convergent series solution.. In other words ~l(n) (z) mus; be finite as a+-. Now,

from equations (gla) end (glb), the asymptotic expansion for large values of u are

L J



NACA TN 2582 49

Equation (92a) gives an exponentially dampfng function of z and e~.
t~on (92b) is an exponentially increasing function of z which is

divergent as u -m. Therefol”e,the only choice is Dn = O. T%US-—
there can be written

(
W(u,e) = C1(J+ c2)(c3e + c4) +

1[
m qwg’~ (z) Cos nM +

n=l

(93)

where

given
sible

there

C,c, c,c,
1 234

In, En, and X are determined from the

boundary conditions or from the boundary conditions of incompres-
flowj if necessary. If ‘~ cos ~ and En sin ~ are introduce%

can be written

It is interesting to note that, when m = ~, equation (87) reduces to

equation (76). Thus the second-order approximation is just one par-
ticular case of the third-order approximation with b = c. Of course,
when the choice is made that b = c’= O, both cases reduce to the first-
order approximation, equation (72a).

Alongthis line of
equation (82) becomes

thou~t, if there is

g_ a++$4
(1 + ca)2

The differential equation becomes the normal

imposed k.0or2b=c,

(95)

form of the Bessel equation

dz2 ‘(-+$n)=od2~l(n)
(96)

—. —-—— .—— .. _ .—
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z=2“2+($+ ‘)
m. r n2k a

i-— 2C3

. (97a)

(9P)

Its solution can be written as

(n) z is the mod~ied Bessel function”of the second kind tithwhere
~ (5)

complex order m.
()

The function %(n) ~ and no others satisfy the

requirement of boundedness in value as u +CO. This canbe shown
by the asymptotic expansion

S!zs J
(98)

There is another interesting

following conditions are chosen:

Ca=— or%+l as a+oY.
2

feature of this approximation if the

a =~ at u- O and c such that
da

Then,

(99)

.
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and

z (=nh~
s.

+ )o

51

(100a)

1+ ac

The advantage of this is that the boundary conditions can still be
brought from the incompressible flow.

The accuracy and usefulness of this third-order approximation
discussed in the last section of the paper.

(100b)

is

5- WPOTHETICAL GAS LAW CO.RRJH?ONDINGTO APPROXIMATIONS

OF CHAPLYGIN’S SECOND EQUATION

In equation (71a), if ~ = $1(u)$2(0) is introduced, the principle

of separation of variables yields:

where

(101)

( 102)

a = -0.2513-
[ 1(1- T)l/2&T+(l; T)2 + tanh-l (1 - T)l/2

3
( 103)

da pl—= -—.
dq . Po q

(104) -

. ..-— .-———— -—.——— -.———. — —.—
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Since K(a) is an implicit function of U, some
different orders have been made in the preceding

approximations of
section to obtain

useful solutions of wl. It is natural-to ask ~hat kind of hypo-

thetical gas laws will correspond to the different approximations.

zt is understood that a is just another way of expressing the
velocity magnitude; consequently it is defined once and for all time
by the exact gas behavior as shown in equation (103). The variable a
is independent of the hypothetical gas law for each approximation
shown in the preceding section. The problem now is to find the func-
tional relations of p ~d P/PO in terms of u as the independent

variable. First of all, by definition,

* . (a*)2

and the differential form of Bernoulli’s equation gives

dp
— = -Pq
dq

If equation (104) is rewritten

it can easily be shown that

( 105)

(106)

( 107)

2 is expressed in terms of q-l and its derivativesConsequently, if M
with respect to u, equations (1o6) and (107) yield

q_, d2(d
If#=l - d~

[1

ad’
da

(108a)
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On the other hand, equations (102) and (106) give an alternate expres-

sion for M2 in terms of q-l and its derivatives

M2 .

Equating the

obtained of q-l

which is the same

1. ()L 2K(CJ). 1 -
Po ~(lOge q-’ijK(a) (108b)

above two equations, a differential equation is

with respect to U,

dz (q-l)
—- K(a)q-l = O

au’2
(log)

equation as equation (101), if q-l is placed for v
and nX is set equal to 1. If‘the solutio~ of e@t ion (101) are
known, the solutions of q can similarly be obtained explicitly in
terms of a.

If now the solution of equation (109) is substituted into equa-
tion (106), the density rat~o is obtained as a function of u. I?if-
ferentiating this expression with respect to a as given in
equation (107), the Mach number is obtained in terms of U. The
derivatives above involve only differentiation but p(u) has to be
obtained by the integration

p. Jpoq2 da (110)

Of course, if equation (109) can be solved exactly, the relations
of P/P. and p with respect to IS will coincide with those already
obtained from the exact gas law.

Now, introduce different orders of approximation to K(u) in order
to solve equation (109). Then, obtain the corresponding approximate

solution of q-l in terms of u called &l(a). With the term &l(u),

P(d/Po can be obtained from equation (104) and p(u) from equa-

tion (110). Then, the approximations can be compared with the exact
values, both in terms of a.

—.——.. —.- ——..- —--—— ———. ———— --
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h the preceding
third approximation

where a, b,andc

section, the best approximation

g3 . au(l + bu)

(1+ CU)2

NACA TN 2582

to K(u) is the

(111)

are constants already chosen according to certain
considerateions. Substituting into equation (109), there results the

differential equation of 3-1 corresponding to the approximation

of q-l,
,

dqq”q - au(l”+ ba) ~-1
()da2 (1 + CU)2

The proper choice of the solution is

F =~ # + FqJz)
J

where

2P
z= ~(l+cu)>o

-2ba
k=-c

r
–<o

2C2 b

‘=fPr’o

(m)

( 113)

(114)

The teI’”S Mk,m(Z) -Mk,-m(z) are Kummer’s confluent hypergeometric

series (refer~nce 61) as shown in equations (90a) and (90b) and E
and F are arbitrary constants to be determined from the following
boundary conditions:

-—
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(a)At u=O, ~=q=a*

d(&l)
(b)At u=O, ~

‘%= (:)0=0 ‘$(Y)’

h addition, q-l must go to co = u + co (M - q = 0)=

The above ae the correct bo~d~ conditio~ beca~e it is
intended to choose the hypothetical gas law to agree with the exact
one at sonic velocity (IY= O) to the highest possible order Of approxi-
mation and to preserve the asymptotic behavior as u+%

2G “’
,,

If there is introduced z = Z. = — atu=O,
~2

E=
1

[ () 1( ) ‘0%-nh) - +P:%s.m(’o)a*ZoW 20
(U5)

..

F=
1

D

y+lh

() 1
~%,m(zo) - ‘O%,m@O)

(116)
a*zoW Z. 2

.
,, ,’

‘&re IT(zo)‘~,m(zO)M&,-m(zO) - ~,.m(zO)M~,m(zO) ‘s ‘he ‘romtim=

From equation (104), the approximate density ratio is

,5
~ E~,m(z) + ~,-m(z)

— =— (117)
Po zoc El&m(z) +~&,-m(z) ‘

which is plotted in figure 14. It differs very little from the exact
curve. From equations (108a) and (lab), the approxhate Mach ntnnberis

,’

li=l- (u8)

. ..— —..-. ——. . -—---- -—— -—-—— — - —— — —--— -—.—
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which is shown to compare reasonably well with the exact curve in
figure 15.

The values of
(@= E*2

@
() and p against u can be calc@ated

from

(=*)2=

.

and

[i,m(.) + qJ.g2[E,m(z) + *,-J5J ‘1

[~,m(z) +%,-m(zj {[%,m(z) +~,-m(zj -[H'~,m(z) +~,-m(z~} ‘W)

P.

J‘= pI#:q,.m(z~2
(120)

Since the hypothetical gas law differs so little from the exact
value, it seems justifiable to use the exact gas law to replace the
hypothetical gas law ff necesssry, particularly in the neighborhood
of the sonic velocity.

To the author’s lmowledge, the only available high-order approxi-
mation is Loewners’ approximation (reference 73). It is the basis of
Carrier and Ehlers’ investigation on channel flow (reference 32). For
comparison, his approximation in gas behavior is given in figures 14
and 15. His approximation is correct at the sonic velocity to the
second derivative of the K - u curve.

For the present second approximation b = c or m = --$ is

chosen. When 2m is an integer only one of the series solutions is
valid, namely, Mk,-m(z). If the solution ~,_m(z) is retained then

the second independent solution can be obtainedby Wing the limiting

.
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value of ~,_m( z) as m + -$ It is quite similar to the develop.

ment of the preceding section. No further details are necessary.

For the case ‘2b = c, k = O. Similar solutions canbe obtained
with slightly different boundary conditions.

6- TRANSFORMATION BETWEEN HODOGRAPH PLANE AND PHYSICAL PLANE

‘0 dq
With the introduction of da = -— — the differential equations

Pq
for ~ and # from eqyations (10) and (16) become

(121a)

(121b)’

where K(a) = (~~(, - Ma). As shown before, the differential equation

in ~ is

with the exact value of K(u) approximated by

iqu) = au(l + bcr)

(1+ cu)~

Introducing ~(a,e) = $l(u)~2(e),

d2$1
—- n21.2%(u)$1= O
du2

(122)

( 123)

— — ——
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where n is an integer and k is positive and real; k is introduced
here in order to make ~2(nM) =v2(nlB + 21-t)periodic. For s~licity

k = 1 is chosen in the later treatment. With the introduction of

z=~~(l+ca) (not to be confused with Z to reintroduced

presently), the general ’solutionof eqwtion (122) has been found to
be

V(U,e)=AO(U+ a.)(e+ eo) +
z
m ~W~~ (z) cos ne +

n.1

w

E (n)
Bnwk,m (z) sin ne (124)

n=l

where Ao, An, Bn~ rJo,and e. are to be evaluated from the given

boundary conditions for a particular problem at hand, or from the
solution of the corresponding incompressible flow. The superscript (n)
is applied to the Whittaker’s function in order to show its relation
to n. Suppose that all these constants are known and the right-hand
side of equation (124) is assumed convergent and represents $(a,e);
it remains to transform the results obtained in the hodograph plane to
the physical plane so that the problem is solved in the physical plane.
The procedure of carrying”out such a transformation is given here.

First introduce q and e, the inclination of the velocity
vector, as

1

u = q cos e

V=qstie

where u

and v .

Then the

.W. potif
ax

s the local velocity component along the X-axis
P aY

?.!!!=_––‘0 ~ is the local velocity component along the Y-axis.
ay p ax
total differentials of ~, v are
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Or, in short,

@=Y&@zdy
ax ay

= q(cos 6JIX%+ Sin e dY)

d~ NW=—ax+-dy
ax ay

where Z = X + iY is
u, (3 as independent

= -& q(-Sh e d-x+ COS e dy)

(125a)

(la)

a complex variable in the physical plane. With
variables in the physical plane,

(126a)

.,

(126b)d~=~dcr+~d~
au ae

The-derivatives of @ can be eliminated entirely if the relations
given in equations (121a) and (121b) sre introduced in equation (126a)

(=7)

.

.—— .—— .-—. — — .—. — ..— —--— ..—.— .–——.— —_ ———
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Substituting equations (126b) and (IZ7) into equation (12’5c),
equation (125c) can be rewritten as the exact dfiferential

dz=%. +%e
au ae

or

(128b)

(128c) ~

The above relations are confomal and uniquely exist as long as the
Jacobian determinate

a(x,y)

a(~,e)
+

h the case of a(x,y)
=0 at

a(u,e)

the physical plane. If

hodograph plane as shown

Before carrying out
to make the presentation

—

00rm (12g)

(X,Y) some singularity may occur in

some singularity may occur in the

in reference 48.

the calculation, a few symbols are introduced
a little clearer. Let

Jo) = (
a+ ao)(e + eo)

~c(n) (n)
= Wk,m (z) cos ne = W(n) cos ne

t
(n)-V ‘n) = W~~ (z) sinne =Ws sin ne

J
J’

(130)

—.. —___
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Also represent Z = Z(o) corresponding to $(0) and Z = Z(n) to

~(n)(z)c For future use, rewite equation (1o6) as

dq= Po

da
-q ~

1 dp Po M2-—= —
pdu p

and

()dpo K——= -
da pq q

(131a)

(131b)

( 131c)

To carry out the evaluation of Z in termsof u and 8 is
rather too lohg for the space available in this report. The basic
method of calculation is rather simple. Since in equation (128a)

dz-:: az— de is an exact differential, az
()
or az

‘—du+ae z z
can be

inte ated to obtain Z except for an unlmown function F(a) (or
F(e)~to be determined. The unhewn function F(u) (or F(e)) can

be evaluated from the remaining relation
()

& or~. Of course, in
a~ ae

tpe operation, repeated use has been made of the differential equation

d2~2(u)
- n2R112(a)= O or Whittaker’s equation. For further details

da2

the following section may be consulted.

n= o.- In this case,

Z(0) =x(o) + i+)

eie

{[ 1.
=— ~(u+uo)-l -i(e+eo)

}
+ %(0) (132)

q

z (0) = ~(o) + iYo(0) is the constant of integration.where o

—— .. ---- _...— _ . . .—z— _ ——- —.—
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n = 1.. (For n = 1, the function F l)(u) is an integral as

The term Z=(l) can be expressed

and

[

2ie dW(l)
z=(l) - z (1)=2—

co +
h da

by

1[
5 w(l) 19dW(l)

1
3 W(1)+-.— -

P 2q da P

(133)

~

[[

~ P. dw(1)

1-KW(l)da
2q p da

where ~ ‘1) and Zso(l) are the integration constants.
o

~“ - For the cases n # 1 or O, the function
found to be a constant

Zc(n) _ ~co(n) =

[

iei(n+l)e dw(n)
—+ 1~w(n)

2(n+ l)q da P

[

ip-dn-l)e dw(n) ‘o w(n)— -—
2(n - l)q da P_

(134a)

1w(l) ~

(134b)

F(n)(u) iS

(135a)

.?

—.-———
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and

From the earlier

z =~z(o.

and the constant

1ei(n+l)e dw(n)

~

‘pow(n) +—+—
2(n+ l)q da p

e

[

-i(n-l)f3~w(n) npo
—- — 1w(n)2(n - l)q da p

definition,

+ AIZC(l) + B1&)

term is

~= AoZo(0) +AIZC (1) +BIZs (1) +
o 0

m

+ H 1A#=(n)’+Bn~s(n)
n=2

m

lJ 1
%Zco(n)+Bnz~o(n)

n=

(136a)

(136b)

Substituting equations (132).,(134-a),(134b), (135a), and
(135b) into the above equation,

1Po (1)
~w -

)
1 [

(Ml+ B1)e2ie ~w(l)
+ U. - 1- i(e + eo) +

4q
—+
da

zq k-:w(l!l+

(Al+ ~~e dw(l)

~-yw]](-iAn+B~e-i(n-l)e dv(n) np (n)

2(n - l)q

..-..— —
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In more detail, the expression is
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LAoeie P. 1 (iAl+Bl)e
[’

(1)2i0 dWkm (Z) +
Z-zo= ——(a+uo)-l-i(e +eo) +

q k da

,

[

(1)(Al + ~_J)e dwk,m (z) P.
:w~~ (z) -

1

(1) (z) +_—
2a da ~ ‘k,m

— . L

Ml + B1

J[

(1) (2)
I P. ‘Wk,m _ K(u)w!~ (z).— da +

2 qP du )

* (%+ JQex{ [
—

i(n+l)e dw~~ (z)
n~o w~~ (z) +> +—

2(n + l)q da
n=2 P)

.

(-tin + BJe

[

-i(n-l)o dw$~ (z)
Y ‘Po (n)

2(n - l)q 1-?Wk,m(Z)
da

.

> p(l +where z = —

The above result

(
mationb= cm=-

(13W)

Cu).

is also true for the cases of the second approxi-

1)- , or of the approximation b
2

= 2C (k= O).

7 - FLOW OF COMPRESSIBLE FLUID TBROUGH AN AHRTURE OF A TWO-

DIMENSIONAL lI?CilDIED-WAIMD,STRAIGET-EIKED NOZZLE

To apply
reasonable to
pattern which
For instance,

a critical test to the present investigation it seems
compare the present approxtition with a well-known flow
has been studied by early explorers using the exact method.
Chaplygin gave an application of his investigationto the
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efflux of a gas from an infinite
approach, repeated the example.
with the walls normal to the jet

65

vessel. Later Lighthil.1,fo~owing his
Both considered the particular case
and both brought the boun&ry condi-

tions from the incompressible flow and treated the msximum jet velocity
up to the sound velocity.

The present application gives a more general type of such flow -
flow through an aperture of an inclined-walled, straight-edged nozzle.
Besidesj the problem is treated directly as a boundary-value problem.

The question of the maximum velocity in the jet depends on the
value of the ratio of the pressure pm surrounding the.~et to the stag-

Y-—

()
&>Y;l 7-1

nation pressure p. in the vessel. As long as
Po

, the

maxhum velocity can never exceed the sound velocity. The boundary
value of the stresm function ~ is clearly defined; therefore it is a

Pm
direct boundary-value problem. For the case

Y+, -*the

()
~< ~
o

velocity of the jet will be supersonic and ttis problem is as yet
unsolved. .

.

tion
The approximate
(84a))

differential equation tied is (given in equa-

(138)
/“

and its general solution has been found to be

~u,e) =
(n)

(clU + c2)(c3e+ c4) + ~ (~ cos N )+ En Sin n~ wk,~ (z)

n=l
.

= (Clu + C2)(c3e + C4) + E %w~~ (z) Sti (nM + ~) (139) “
n=l

,

—-. .— —— —.— _——.
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where cl, C2, c ~ C42 An> Bn~ md ~ are const@s;
3 %lSin%l=%l

2nx
and An cos ~ = En are obvious; z = —

C2
~(abl+ca)ZO,

[ i-

1 (nA)2a(c - b)~_-nX(c-2b) S<O ~d m= —- ; and n is a posi-
2C2 b’ 4 C4

tive integer. It represents the required solution if the series
converges.

The constants cl, C2, C3, “C4, Anj CLnjma ~ == determined

from the boundary conditions which are shown as follows.

e. &rbitrary.- The flow in the physical plane is shown in fig-

ure 16(a) and b the hodo~aph planes in figures 16(b) and 16(c). Since
it is ho~m that the discharge Q from the aperture is finite, “the
stream function v is bounded. Moreover, the flow is symmetrical with
respect to the center line. If the rate of total discharge is introduced
as Q, then for inside the vessel there canbe written

.

$=-+ at f3= e. 1

Thus it iS obvious
a constant pm, q

from consideration

and

Q =Oat6=0 }

$=: at 6 = -EJo
J

(140)

that ~ is an odd function of 13. Corresponding to
w IS on the outer surface of the jet are constant

of Bernoulli’s equation. Thus V = -~ at

Cr=uo = constant

1

J
(141)

.-.-

—.— ———
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First of all, since $ = O at e = O,

}

~=o -

C4=0

Thus equation (139) becomes

(142)

V(u,e)= (c~u + c2) c3e + ~ ~&~ (z) sin nw (143)

n=l

which is an odd function of e as required. Next, the stream function
is defined in the interval .eo S e ~ e. or the period 2eo. Thus

(when n is an integer) sin nl.(e+ 2e~ = sin n~ or 2nXBo = 2nyr.

(144)

Substituting equation (144) into e~tion (143),

Now, since $ is bounded everywhere, particularly when ‘U+m
or M+O, c1 must be equal to O. Thus equation (145) yields

,. ..

(146)

-. .- —.. . ..——. .—————.—. —. .— ———. — —



Thus

V(u, e) = -

Finally the constants An

tion V=-: at U=uo

1.
NACA TN 2582

(147)

(148)

can be determined from the boundary condi-

or Z=zo== F(ab 1 + Cuo) for 0<9S 60. .
00C2

Q=-:;+5%4%(++$=-~ (149)
o n=> o

or

Now the left-hand side

right-hand side is the

verges. It is easy to

of the equation is

Fourier series of

()‘o sin ~
o

a hewn function 19/e. and the

()
:1. + if the series con-

0
determine the coefficient as

(150)
.

.
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or

69

&=_9_ 1
‘mw~~ (Zo)

Substituting into equation (lk8),

[L-m (n)Wk,m (z)
$(%e)=” Q@+Q

()

e
(n)

sin nfi—
2eo m e.

n=l ‘Wk,m ‘O

(151)

First, it is necessary to show that equation (151) is valid for an
incompressibleflow which can be considered as the limiting case of
a* -m. From the definition,

there results,

and, from the

(
Gsince — =
c

From equation

values of a

J’
a*

a &=

q
Po

for incompressible flow,

dq
T

‘i = Mm a=lim lo& $
a*+rn a**

definition of z for very large values of a,

1
)

~ = 2nk
— (1 + Cu)
c

. 2n?a ~ ~ O(u_ljJ

(n) (Z) for large(87) the asymptotic expansion of Wk,m

is

(152)

— .—- ...—...——— —— ——— —— --
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z

(n) (z) =~
[ (1-=$l+OL

‘kjm a

= e-nti(~a)k~+ ‘($!

Then the ratio of the two Whittaker functions in equation (151) at very
large values of cr is

Now, for an incompressibleflow with equation (152),

kiln ( a* )ao*
q - Cioi= 10ge ~ - loge ~

a*=ao*~

= lim (“ lo&=-

)

lo% ~
a*.so** ao* %

. -loge :

and

ai u lo% a* - loge q
—= lim —= Mm
Uoi a*=ao*~ ‘o a*=ao*~ lo~ ao* - loge ~

--

(153)

=1

—
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Introducing the above restits into equation (153)>

Thus the stream function for the incompressibleflow is

which reduces to Chaplygin’s case-if 190 is

The convergence of the series is easily

set eq~l to 3-/2.

proved, because

(154)

(n)
wk,m(z) ~ ~ for 22 z (n)

o and ‘kjm (z) > 0 is a monotonically

Wgi (Zo)
,

decreasing function of z in the subsonic range (see appendix B).

Compare the nth term of equation (151) with ~sinnfi -Q- which is a
e.

term of a convergent series, and each corresponding term is smaller.
Therefore, equation (151) is convergent.

The main interest of this problem has been the minimum width of
the jet which occurs at X =.. Therefore the solution must be trans-
formed back to the physical plane.

With the differential relation from equations (la) and (lb), the
following equations can be der,ived:

(155) “

..-..- .- .—___— —.———



72

and, rewriting equation (128a),

dz=dx+iaY

NACA TN 2582

Differentiating equation (151) with respect to
dz _ 2nYC

rbering Za =X-= ab=~
(
since @ =

,0 0 c

(156)

u and e and remem-

)
1,

(157a)

(15P)

—
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Substituting the above equations into equation (156),

. —

1
cn (n)

Q1
E

w~,m (z) =06 Ill-to—-
‘eo2+ ~n.lW~~ (Zo) -
.

l(n)(z) ~fi nfie
2POQ W Wkm

i—
@o x

n., W@~
“1

— du+

()
(30

J ‘o

L

[

@oQ 1 +
—.

peo 2

73

+

( 158)

which is the conformal relation of any elementary length in the hodo-
graph plane to the corresponding element in the physical plane as long

as the Jacobian determinate -# O. This condition is automatically

fulfilled in the subsonic region up to sonic velocity as has been shown
by Tsien (reference 45) and Craggs (reference ~). Since dz is an
exact differential, there can be introduced,

{[ ‘

E

(n)
~Z_eie XA+

1

Wkm (z) Cos ‘fle +

au q eo2 (n)
()

~
‘=1 ‘k,m ‘o

‘(n)
flPoQ m tik,m (Z)

z

1

sin y
Peo w(n) (Zo) 0

n=l k,m

(lsga)

.— — _—_— -—. ..— _._. .——.. —
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and
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[xw

iPoQ 1 +—.
peo 2

n=l

The value of Z can be determined

tion of u to be determined, and,

(n)
Wk,m (Z)

1}

nfie

(n)
Cos —

‘k,m (Zo)
00

az
by‘tegathg %’ ‘-cavinga‘mc-
consequentlyy

[

= Cos
w 2w&) (z) eo

-z=~
L (:)

1

+
2eoq n=l wk,m (ZO)

()~-l

where F(u) iS to
equation (la)

*
(160)

be determined. This can be done by differentiating

[)1
2

1

‘(n)(z)+; KW$~(z) +~K+ F’(a)25 -lawkm
o PJ o 0

(161)
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where ZO=7 and equations (131a) and (131b) me used. Equating

equations (15~a) and (161),

E
nfi

,iQeie ~
sin ~

[

z %’(n) (z) -
eoq

[) 1(n)
a k,m

n.1 nfi
~ 2- 1 ‘k,m [Zo)

(162)

The expressions in the brackets of the right-hand side of equation (162)
are identically equal to the differential equation, equation (78) if

~2 . n2/

~
and consequently are zero as shown.

o

Thus, choose

\ F(u) = Constant_= Zd: (163)–-__,_ —

Now equation (16o) can be rewritten in a more suitable form

{[

w ()~+1 e
-POQ E

‘(n) (z) + Wg (z) eieo
2 & ‘k,m

z = 2peoq
eio +

(n)
+

n=l ()‘k,m ‘o
7+1
o

(164a)

_______ ..——— —. —- . ..— — _ — —— —.. —
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Specifically,
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The
(3=

the

H w p w’(=) (z)+ wp~ (z)
-POQ E 2 ~ k,m

x=— Cos e +
)

2Peoq n=l
~(n) ~zo~
k,m

(n) (z) Cos %‘(d (z) - Wk,m2LW
P. k,m ()

1}

-16’

(n)
()

nfi
‘Jk,m ‘o

—-
Go 1

Cos ()~+le
o +

~+1
o

( 164b)

2 & W;(y (z) + W$ (z) Sfi ~. -

[[

E
Y.=.in e+”

J F+ 1)”

2Peoq n.1 (n)
()‘k,m ‘o y+l

o

p w;(:) (z) - (=)2—Po ) ()

m 1]

Wk,m (Z) Sin t- 1 e

(n)
()~rk,m ‘o

—- 1
e.

( 164c)

convergence of the above two series must be established. First, at

~o”rz= Zo, equation (164b) ddes not converge for e = O, because

velocity vector of q = qm at e = O is located at X = ~.

At very large values of n,

z = & P(1 + CUo) = =(1+ Cue) ( )sinceE= 1
c c

.
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With the above notations the asymptotic expahsion of
(n)

Wk,m (z) for

large values of n can be introduced as follows:

(166)

at sonic velocity (u = O). For the subsonic velocity (a > O), a similar
expression should be given; the case rJ=ois
more from reference 61, page 352, example 3,

._ , k-owlw;(:) (z) k

>
.— _

Wpi (z) z 2
J

z

more critical. Further-

Wp] m (z)
->
(n)

Wk,m (z)
(167)

NOW it 3XJnecessary to show that, for large values of n, the value of
f (n)

Wkm (Z)
does not depend on n to the first order. Substituting. .

Wy” (z)

eq~ation (166) into equation (167),

J-;
[

+ (Yii+E)e-h 1 +

which is a constant independent of l/n

(]“1
ii (169)

to the first order for lanze
values of n. Therefore the coefficients involving Whittaker’s fun&ion
for lsrge values of n can be written as

r(n)
()

[

2pT7k,m ‘o +1-~~ 1

1

-ti+l
P+(ili+%)e-—

~W(n) Z.
()

Po
k,m

(169a)

—. .— . . .—.—.c— _.-—_ —. ——— ———
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both of which are bounded. For the case

an integer) the series in equation (164c)
shown at the surface of the jet. The equation

eo=~, ~,. ..j~(8i6
2

is convergent.This can be

[

‘(d -
2&wk,m (Zo)

-1

()
wp~ 20

) “))SiII (sn - l)e

sn - 1
(170)

SPOQ
is dominatedby

(1
l+E

m sinnlel + F m sinnlel

23rPm~ E
)

, where E
n nn=l n=l

and F are positive

‘(n)
()P ‘km ‘o

2=
%ig~ (Zo)

w;(:) (Zo)

nuniberssuch that E & 2% > +1
Po ~(n)

()k,m ‘o

-1 for all large values of n.

and

Actually fewer terms occur in equation (170) than in the dominate

EmSinnlel =2 lel
series

n 2-T
Therefore equations (170) and conse-

n=l

quently equation (164c) are convergent for u =0. Similarly, the
convergence for u >0 can be shown.

. ---

-.——

.
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e. = $- This is the case which has been trea~ed by Chaplygin and
c

Lighthill. The condition e = f30 occurs at the mouth df the aperture.

Let h/2 be the half width of the mouth. Then,

Y=:

E (-l)n w (-l)n

m- ‘1al-ln=l n=l

[

‘(n)
POQ

=—1+8
z

m (-l)nn ‘~wk,m (Zo) +

Yfpm~
n=l 4n2 -1 PoW~~ (2.)>

zm(-l)n’-l .~~)
1

-1 ‘-1

n=22n’-l _ -1
-1

If,at X=@, the width of the jet is ~, then, by definition,

Substituting this value into equation (171),

(171)

(172)

W(
‘ n)

()‘o m (-l)n-l + m (-l)n-l
1+8~~p$w::7 z ‘~

‘1n=lkn - km(o) n=2*-1 n=lh-l7

(173) “

—...-.—-- —.— .— ----——— --—— — —— — —-
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Makinguse of

‘p .1 n-1

n=l 2n -1=

NACA TN 2582

the res~titof the well-known Leibniz series

~ equation (173) can be written~)

E ‘(n)(Zo) .2fi2 16 pm m (-l)nn ‘k,m—.
?=~+ fi ‘o n.1 4n2 - 1 Wg; (Zo)

+ ;(Z - ‘)+%)

‘(n)
16 Pm

=l+— —
()m (-l)nn ‘kjm ‘o

fiPo E
n=l 4n2 - ( 0)

1$11 z
>

(174)

Just as a check for the case of incompressibleflow, the limiting case
of a*~oa or U+m may be considered.

First, considering equation (167) as a becomes very large and n
is finite,

()
12

m2- k-z

z

z

-$!$e

.

(175)

The above equation tends to -~when a +CO, owing to the fact that

~ and fi both become zero as u~m (z +Co). Substittiing the
above equation into equation (174),

.

.
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--

.

.

h
E

8m (-l)n-in
rm =1+7 n=l 4n2 -1

Or, inversely,

hm 3(
—=—=0.6110
h 2+Yt

(176a)

(176b)

which checks with the well-known result of Kirchoff.

For the case ‘O = 0 (%’ 1) the width ratio hmlh has been

calculated from equation (174). It is found to be 0.746 by sunming
terms up to n = 10. It is expected that the error is of the
order -0.002. Consequently,
result (hmlh = O.7447) which

The Johns Hopkins University

it

is
checks reasonably well with the IJghthill
based on the exact Chaplygim function.

Baltimore, Md., April ~, 1951

.—.

— —. .. ——c — ———— ——. —
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ao*

a,b,c,d

A,B,C,D

~Fl(u,~; 2)

~l(a,b,c; Z)

h

h=

APFmUIX A

SYMBOLS

velocity of sound

stagnation velocity of sound

Constants

constants

confluent hypergeometric function

hypergeometric function

width of jet

width of jet at X = m

K= ($~(1- .2)

El = aa

G=Z l+CU -

E3 = aa(l + b~)

(1 + C(J)2

k=
-%2%= ’(:-;)%=1 “

E=:

M local Mach number

% free-stream Mach number

— —
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(d (=)
‘k)m Kummer function.

‘2

()

m2=~-nk%c-b)=l-v2a -1 ~~=1
4 C4 4 ~2 c C2

mE=—

n

P

P.

Pm

Q

Q

q

u

v

z

positive integer

pressure

stagnation pressure, pressure h vessel

free-stream pressure, pressure surrounding jet

arbitrary function of q (Q(q))

rate of total discharge

local velocity

X component of velocity

Y component of velocity

Whittaker function

w;(:)(z) =
(n)

dwk,m (z)

) dz

X,Y coordinates in physical plane

z complex variable (X+ iY)

z = yfiz(l + ..) sy(l+cu) if=+
C2

‘o =y@i(l+cao)

—. -.—— .—. — ..— —. — ———
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constants

84

a,P

$=*

7 ‘ ~/% ‘ 1.4

G = Q(q)
( ()

de 2
defined by e — = -

1- ~2

dq q2 )

C=(g)yy: (supersonic)

@G@=6’+ (subsonic)

e

60

e.

k

M

(F

inclination of velocity vector

coordinate of source location, hodograph plane

slope of nozzle wall

characteristic coordinate (n + 13)

coordinates of source location in hodograph plane

characteristic coordinate (-m + e)

y+lpl .
Y-1

J
~*

Pol- ~2
——dq
Pq

q

positive constant dependent on boundary conditions (nk)

.
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.

.

.

P local density

Po stagnation density

Pm free-stream density

- 10)2T
Y-

ii=n+

potential function

stream

e .q

q

function

(supersonic)

[

a*
u)= (1- M2)1/2

dq (subsonic)
q q

‘o coordinate of source location in hodograph plane
1

% m in free stream

85
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APEENDIX B

PROPERTIES OF WBITTMER FUNCTIONS

Here are presented a few important properties of the Whittaker
function which sre useful in the present investigation. Some of the .
properties are givenby Sharma in reference 59. He shows that:

Theorem I:

The functions Wk,m (z) and Wk,W1 (z) cannot have

a co~on zero (root). ~ roots of Wk,m (z) are s~le;

‘kjm (z) and ‘Tk.l,m(z) cannot have a common root.

Between any two consecutive zeros of Wk,m (Z) lies one

and o-one zero of wk-~,m (z). ‘

The proof is rather simple. See the reference.

Next, consider the Whittaker equation:

-( )
mz-~

d%+ 1 k

dz2 -T+; -~TT=O

(n)
where W = Wk,rn(z), the Whittaker function. In the present case,

z=q-.-y2(:+“)>0

where n is a positive integer and X

(a>c>b>O),~=l
C2

is a positive constant.

(Bl)

(B2)

(B3)
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.
In this case m2 -

ence 74) which requires

1 <.0; the powerful Wintner theorem (refer-
F

k<O and m2 -A>O to make
4

(-1)
n d~~km(z) >

0 (O ~Z ~m) cannot be applied.
dzn =

(n)
wk,m (z) may oscillate in the range _:<u<o. ‘But

Actually,

the monotonic

(n)
positive nature of Wk,m (z) for a ~ O can be proved as follows:

Theorem II:

The proof

For nX>O and O~cr<CO (l~M>O), then

(z) >0.

is as follows:

If equation (Bl) is multiplied by
($= 4%’2(%)’ ‘here Cmbe

written
—

d2W n2A.2aa(l+ ba)—-

da2 (1 + CU)2
w

or, more properly,

d2W n2A2au(l + ba)—=
dc? (1 + CU)2

= o

w

. .

(B5)

— ——.-..——— .—.—— - .——- ——--———- ---—— —.— ——— .-—
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By the given conditions, as long as a ~

n2A2au(l + ha)

(1+ c&’

ITACATN 2582

(B6)

~2~
Therefore — and W have the same sign. But W = (n)w~,m (z) is

.da2

‘;zk=e ‘nA(*+U)~(l_+ ~~nkt-~++) >0 for large
asymptotic to e

‘n) (z) curvesvalues of IS and tends to O as u-o.
‘ence ‘k)m

-1 d% >0downwardas u + . and so must continue to do so while W —
d~ ●

This proves the theorem.

There is another interesting feature of the Whittaker equation.

As long as m2 is real and the function representing the boundary con-

dition is real,
(n)

Wk,m (Z) is always real, no matter whether m is

haginsry or not. For the present investigation, m is imaginary, but
(n)

Wk,m (z) is real (O<z <W). This question has puzzled the author

for some time.

.

.-
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Figure 1.- Plot of & and Mach number M aa a function of T.

%

7 = 1.4.

2i3T 1/2. q = 2T 1/2.

()
M= —

()
M-l, ~ = 0.9192 at T = 1/6;

1 --r ‘Q 7-1 %’

M=@’, += 1.200 at T = 0.286; M =6, ~. 1.783 at, r . 0.5;
%“

111= m, ;= fiat ‘“1.00.
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Figure 2.- Plot of K as a function of T for O < T

log(-K) as a function of T for 0.22 < T <1.0.

()Po 2(1 -7=1.4. K= ~
1 - ~lT

M*) =

M=l, K=O,
(1 - T)Wl” M = 0) K

T=l/6; M=m, K = -m, Tel.

<0.22
IJ 1=6

=1, T

and
for

= o;
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Figure 3.- Pbt Of K as a function of U. HorizonW ,a~p~te: K . 1;
vertical aaymptote: U=Q,2~13. 1.1=0, K=l, u=m; Mal, K=O,

U= O;M=9 K=-- a=a.2513.
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Figure 1,- Plot of u as a function of T.

[ 1
..-c).,~12s,- (,-T)~ 1+++ (’;’)2 +t*-’(l -.):.

M=O, T=o, u=w; M=l, T= l/6, u= O; M= CO, T = 1.0, u = 4.2513.



“o .1 ~ .2 .3 4 .5 .6 7 .8 .9 LO
-c~

(a) As functionB of T. See equatiwm (18c) and (22c). M = O, w = -%

at T= O; M=l, m= O,at T51/6; M=l, fl=O, at T= l/6;
M=w, Q = 2.277, at T = 1.0.

Figure 5.- Plots of w and Q agaimt varioua functionB.
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(b) As functions of
M=l,

M~

M, See equations (18c)-and
u= O; M=l, fl=(); M=oJ,

Figure 5.- Continued.

(22c). M=O, @=-w;
$2= 2.277.
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(c) A8 functions of
M=l, U=

cf.
0,

I L
u—~

M=O, u=m, u=-w; M=l, IY=O, w=O;
!2=0; M = CXJ,a =0~2513, O = 2.277.

Figure 5.- Concluded.

.



Figure 6.- Plot of

Kt

aqmptote: — =

d(loge K ):,
1/2

am
?

d(io~ K1/2)

am
as a fumction of m. Horizontal

0; vertical asymptote: m = O. M = O,

d~oge K1/2J ~ -m ID = O.
@J=rn; M=l,

a
)

L3



I

I
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Fi~e 7.- Plot of
d~o~(-K)l/~

dfl
aB a function of Q.

asymptotes: L-i=o, ~ = 2.277. M = 1,
d Lio& (-K)l/~vefiicd

=-> fl=o;

M.., &%@Yl= -., ,.2.277. m
m
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2
)

I

o

-1

-2

. n .
u -z

Figure 8.- Plot of 6 as a function of o and $2. M.0, u. -~,
G=-co; M=l, u=O, G =O; M=l, Q=C),G= ();M= co,
Q = 2.277, G = 2.268.

——. —-. .—— .—— _ -——— —— .—. -.





!4

Figure 10. - Dlfferent order approximations to curve
#2

s 3(1 - M2)1/2

against m at free-stream ~. Horizontal aaymptote: fK/2=1.

I &/2 . p!q~ - M3V2,
Pm

zero-or&r approxlmat ton

~~1/2 = a + to, first-order appro-tion; ~1/2

second-order approximation.

by Von K&&n;

.a+km+cu2,

1

,.

,.
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Figure IL - Other mimonlc approximations In compmison with ~~o~ K1/~

in fi~ 6. Horizontal aBymptcte: K’
—. O; vertical asymptate: m = G.
2K

I

I

‘3
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Figure 12.- Supersonic approximations h comparison titiexact

~=1 a@nst .. .ertical asymptote: Q=2027~.
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Figure 13. - Detailed comparison of third-order approximation with exact
K(a). Solid line, exact; triangle, approximation. Horizontal
a6ymptote:

b= 1.61,

K = l; vertical asymp&e: a = AI.2513. a = 9.4,

c =3.89. *=1.

——-. .-————— ——. — —-—-
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I
Figure lk. - C0mp9rlaon of po/p in hypothetical gas law with exact gas

law as a function of u. Ikkted line, exact; solid line, appro-tlon;
long daehed llne, Loewner approximation (reference 73). Horizontal

Pasymptote: — . 1. ~ . 0.6339 at u = o (M = 1).
P. PO E
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Figure 15, - Comprimn of Mach number of hypothetical. gas and exact gas.
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(a) Physical
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(b)Hodo@aph plane (q - 19). (c) Hotigaph plane (u - 19). y = 1.4.

Go = O; ~ = 0.5283; : = 0.6339
0

Figure 16. - Sketch of flow through an inclined-wtied straight-e~ed

aperture.
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